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and
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Supersonic jet plumes were studied using a two-equation turbulence model employing corrections for com-
pressible dissipation and pressure-dilatation. A space-marching procedure based on an upwind numerical scheme
was used to solve the governing equations and turbulence transport equations. The computed results indicate
that two-equation models employing corrections for compressible dissipation and pressure-dilatation yield im-
proved agreement with the experimental data. in addition, the numerical study demonstrates that the computed
results are sensitive to the effect of grid refinement and insensitive to the type of velocity profiles used at the
inflow boundary for the cases considered in the present study.
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Nomenclature

initial diameter of the jet
turbulent kinetic energy
Mach number

static pressure

production of the turbulent kinetic energy

gas constant
radial coordinate

static temperature
time

velocity component in the axial direction
axial coordinate

model constants for compressibility and pressure-

dilatation corrections in Eqs. (7) and (8)
ratio of specific heats

dissipation of turbulent kinetic energy

dynamic molecular viscosity

density

spreading rate of the jet, o- = (dy_,:,/dx)

vorticity

Subscripts
c = centerline

j - jet
I - laminar

t = turbulent

- freestream

Introduction

HE recent resurgent interest in a High Speed Civil Trans-
port (ttSCT) and the National AeroSpace Plane (NASP)
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clearly demonstrates the need for advanced propulsion sys-

tems for supersonic velocities and beyond. Because of the

complexity of the problem, numerous research programs have
been initiated. One aspect of this research has been directed

towards detailed understanding of the complex flowfield as-

sociated with the engine over a wide range of operating con-

ditions. Computational fluid dynamics (CFD) in conjunction

with recent advances in turbulence modeling is being used
extensively for detailed investigation of the propulsion related

flowfield. Currently, there is a renewed interest in the flow

properties of compressible mixing layer and jet plumes since

it is central to many advanced propulsion systems. In addition,

the classical fluid physics represented by this problem makes
it ideally suited for basic numerical studies.

An effort is currently underway to investigate the aero-

dynamics of jet plumes, where the shear layer interacts strongly

with the shock structure in much of the jet plume flowfield.

It is widely accepted that the computational economy of the

two-equation turbulence models offers the best compromise
for computing complex turbulent shear flows. However, some
deficiencies remain in these models that restrict their use in

complex situations. In particular, the local density extensions

of standard incompressible turbulence models were found to

be inadequate in duplicating the experimentally observed re-

duction in growth rate of the mixing layer with increasing
convective Mach number. Various modification¢ 3have been

suggested, but none appear to model the physics of the flow

adequately when parameters beyond mean growth rate are

considered. Recently, Sarkar et al. 4 and Sarka¢ recognized

the importance of including compressible dissipation and pres-

sure-dilatation effects in the two-equation turbulence models
when computing high-speed flows. Simple corrections were

proposed for compressible dissipation and pressure-dilatation

that can be easily included in the existing two-equation tur-
bulence models. In addition, Dash 6 included an axisymmetric

correction in the turbulence transport equations when solving
jet problems to account for vortex stretching. The standard

two-equation model is recovered when the model constants
for these corrections are assumed to be zero.

During the past decade, considerable progress has been
made in the area of CFD. Most of the research activities have

been centered around developing efficient numerical algo-

rithms for the solution of parabolized and full Navier-Stokes

equations. Chief among these are upwind schemes because

they are robust and efficient with good convergence prop-
erties. Complex three-dimensional laminar and turbulent flows
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over realistic aerodynamic configurations have been routinely

simulated using these schemes. Despite the popularity of up-

wind schemes, their extension to solving stiff equations are
limited in literature, especially within the framework of space-

marching procedures.

Since the streamwise gradients are small in mixing layer/
jet plume problems, space-marching procedures are attractive

alternatives to time-marching procedures. Lakshmanan and

AbdoI-Hamid 7 had studied the high-speed shear layer using

an implicit upwind space-marching code containing the com-

pressibility corrected two-equation turbulence model. The space

marching was found to be highly efficient: two-orders of mag-
nitude reduction of the residual was achieved in less than 15

iterations in each marching plane using a CFL number as high
as 15.

The primary objective of the present work is to incorporate

axisymmetric correction, compressible dissipation, and pres-
sure-dilatation terms in the two-equation turbulence model.

The resulting model is then utilized to compute high-speed

compressible jet plumes. Another objective of the work is to

investigate the effect of inflow profiles and grid refinement

on the computed flowfield.

Theoretical Formulation

Governing Equations

The theoretical formulation of the problem starts with the

Favre-averaged form of the equations representing conser-

vation of mass, momentum, energy, and turbulence quan-

tities. The overbar is used to denote a conventional Reynolds

average, whereas the tilde is used to denote the Favre-aver-

age. For the sake of brevity, only the k and e equations are

given here. Extensive details of the governing equations can
be found in Ref. 8:

k-Equation

a a ( a[¢] =p _[9(_: +_,)+p,,d .a-t(i_t:)+ ax_ hf._ - t,, ax_!
(1)

e-Equation

: (C,P_ + [9_,{-C2 + C,x})-_
(2)

where P_ = -{gufu[(a_,/ax) is the production of the tur-

bulent kinetic energy. Here, -hu[u_ is the Reynolds stress,
and #_ and/_, are defined as follows:

-;,u;u; : t,, ,,ax, + _/ - 3 a,, _, ax,_ + k_ (3)

_, = _, + (/.t,/o'_) (4a)

_ = /x, + (_,/cr) (4b)

_, : c.h(£=/_) (5)

In Eq. (4), /x t and _, represent the laminar and turbulent

coefficients of viscosity, respectively. The model constants

used in the analysis are C, - 0.09, C, = 1.44, C_ = 1.92,
C_- 0.79, _r_ - 1.0, and o = 1.3. In Eq. (1), e, andp"d"

represent the contributions due to compressible dissipation

and pressure-dilatation, and X is the axisymmetric correction.

The compressible and pressure-dilatation effects are included

using recently developed models 4._ based on direct numerical

simulation of isotropic turbulence. A simplified form of the

axisymmetric correction used by Dash" is used in the present
analysis. This additional term represents the contribution due

to vortex stretching in axisymmetric flows. The details of the

corrections are given as follows:

Axisymmetric correction

(6)

Model for compressible dissipation

(7)

Model for pressure-dilatation

p"d"= -ot:hPAM _ + ,*,hf-_M_ (g)

where M, = k/21_/yRT is the turbulent Mach number, and
e_ is the solenoidal dissipation. Based on direct numerical

simulation, Sarkar s recommends c_t = 0.5, _r, - 0.4, and

a_ = 0.2.

Boundary Conditions

The boundary conditions to be imposed are problem-de-
pendent. In the case of jet plume calculations, four types of
boundaries are encountered. These include inflow, outflow,

symmetry, and outer boundaries. Riemann invariants were

used along the outer boundary corresponding to the external

freestream. Symmetry boundary conditions were applied along

the axis of symmetry. At the inflow boundary, three different
initial velocity profiles were studied to investigate their effect

on the computed flowfield. These include an experimentally

measured velocity profile," a hyperbolic tangent profile, and

a top-hat profile. Since the solutions were obtained by a
marching procedure, the downstream boundary conditions
were left unspecified.

For the turbulence transport equations either zeroth-order
extrapolation or freestream values are used for k and e along
the outer boundaries. If the flow is outgoing along the outer
boundary, zeroth-order extrapolation is used. If there is flow

entrainment, then freestream values are used along the outer
boundaries. At the inflow laminar solutions were computed
for the first three planes, and thereafter the k-e turbulence

model is turned on. The inflow profile for k takes the same

shape as the vorticity profile except it is multiplied by a spec-

ified value of maximum turbulence intensity (Fig. 1). Once

the k profile is known, the e profile is obtained using pro-

duction equals dissipation hypothesis. Since the k-e equations
were solved by a marching procedure, the downstream bound-

ary conditions were left unspecified.

(_) UU J _-- _o _)_kmax/__.O.O 1 U=

U_

/-Nozzle I ?/

b) (_) e=Pk=f(e.k)

Fig. ! Inflow boundary condition for k-_- turbulence model: a) flat

plate and b) jet flow.
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Method of Solution

The governing equations for the mean flow and turbulence

quantities were integrated using an implicit upwind numerical
procedure employing the approximate-factorization tech-
nique. The numerical code used in this study has been de-
signed to accommodate multiblock/multizone grid configu-
rations. Two numerical algorithms are available in the code:
1) van Leer flux-vector splitting and 2) Roe's flux difference
splitting. In addition, the code has options for three different
algebraic turbulence models and a two-equation Jones-Laun-
der turbulence model.

Depending on the complexity of the problem, this code has

the capability to compute the flowfield using either the space-

marching or the time-marching procedures. It should be noted
that when using a space-marching procedure for supersonic/

subsonic mixing problems, the upstream influence from all

the points downstream is neglected. However, not all the

streamwise derivatives are dropped. [n particular, the stream-

wise pressure gradient is fully retained in the supersonic re-

gions of the flow. In the subsonic region of the flow, the

streamwise pressure gradient term is dropped. This approach

is valid as long as the pressure gradient is negligible. Extensive
details of the numerical scheme, turbulence models, and the

capabilities of the code can be found in Ref. 10.

Results and Discussion

Supersonic jet plumes (Figs. 2 and 3) exhausting into a

nominally stationary external stream were computed using an

improved form of the two-equation turbulence model. In all
the cases, the initial jet radius was equal to 1.28 cm. Because

of the axisymmetric nature of the problem, only a sector of

the jet was computed. The outer boundary of the computa-

tional domain in the radial direction was located at eight

radius from the jet axis.

A compact algebraic grid generation program" was used

for generating the mesh. The computations employed 401

equally spaced points in the axial direction. A grid refinement

study was carried out in the radial direction employing 81,

101, and 121 points. Grid-independent results were obtained

for computations employing 121 points. Approximately 61
points were located in the initial jet radius with a typical grid

spacing of 0.036 cm at the axis and 0.005 cm along the lip

line. It should be noted that of the 61 points used in the jet,

41 points were placed between 0- 1.18 cm, and the remaining

21 points were placed in the narrow region between 1.18-

1.28 cm. Using this grid resolution it was possible to inter-

polate the velocity profiles available from the experimental

measurements." The remaining 61 points were distributed be-

Lip line -_ _Mixing layer

x
Fig. 2 Schematic of a fully expanded supersonic jet plume.

Outer edge of mixing layer/7
/

Inner edge °f mlxlng 'ayeTf _ Tr

I .... / T- Fully
] Inltlalmlxlng ] Transition [ developed
]',_------ layer ------_ ]_---- zone -_-I_ region

Fig. 3 Schematic of an underexpanded supersonic jet plume.

tween the lip line and the outer boundary using a cubic dis-
tribution of grid cell sizes.

The average computational time for each case is approxi-

mately 140 CPU seconds on the Cray 2 computer. Approxi-

mately 10-15 iterations were needed in each plane to achieve

two orders-of-magnitude reduction of the residual using a
CFL number as high as 15. The computed results did not

differ significantly when the calculations were allowed to achieve

three orders-of-magnitude reduction of the residual.

For cases of an under or overexpanded jet flow, the cal-

culation was carried up to 20 jet diameters in the streamwise

direction. For fully expanded jet plumes the computation was
carried up to 40 jet diameters in the axial direction. The
freestream conditions for all the cases were

M, = 0.05, P, = 101,325 N/m 2, T, = 293 K

Case I: Fully Expanded Supersonic Jet

A fully expanded supersonic jet exhausting into the as-

sumed freestream condition was computed. For this case, the

jet operating conditions were

M, = 2.2, P,/P, = 1.0, T,/T, = 1.0

The computations were compared with the experimental

measurements of Eggers." Figure 4 shows the effect of axi-

symmetric correction on the centertine velocity. These results
are obtained using the turbulence model employing correc-

.... With exlsymmetrlc term [6]

Without axlsymmetrlc term

O Experiment [9]
1.2

1.0

.8

Uc
.6

uj

.4

.2

With corrections [4,5]

o o

P o=101325 N/m 2, T= 293K, M = 0.05

I I [ I
0 10 20 30 40

XlD

Fig. 4 Effect of axisymmetric correction on the centerline velocity
for a fully expanded supersonic jet plume.

U c
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1.0

0.8

0.6

0.4

0.2

0.0

Inflow velocity profile

Measurement

...... Hyperbollc tangent

O C, C_,, .......... Top hat

, 0 Experlment 19]

P=101:_ Nm a, _; _31_ M= 0.05

I I l I

10 20 30 40

X/D

Fig. 5 Effect of inflow profiles on the centerline velocity for a fully
expanded supersonic jet plume.
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Poo=101325 N/m 2, T= 293K, M= 0.05

0.15 Inflow velocity profile

Measurement

...... Hyperbolic tangent

.......... Top hat

0.10

u'
u!

0.05

J i i

0 10 20 30 40

X/D

Fig. 6 Effect of inflow profiles on the centerline turbulence intensity

for a fully expanded supersonic jet plume.

With corrections [4,5]

..... Without corrections
1.2 -

O Experiment [9]

1"° F---'° ° __

.8 -

U¢

Lj'-T .6 -

.2 Lp =1013_N/m2,T =_I_M =0.05

I I I I

0 10 20 30 40

XlD

Fig. 7 Effect of compressibility and pressure-dilatation corrections
on the centerline velocity for a fully expanded supersonic jet plume.

Poo=101325 N/m 2, Too=293K, M= 0.05

6

5

4

D/Dje t 3

2

1

Fig. 8

-- With compressibility correction [4,5]

..... Without compressibility correction

I I I I I I

0 5 10 15 20 25 30

X/D

Spreading rate for a fully expanded supersonic jet plume.

tions for compressible dissipation and pressure-dilatation ef-

fects. It is clear that by using the axisymmetric correction,

slightly slower decay rate for the jet is observed. On the other

hand, without the axisymmetric correction better agreement

with the data for the velocity decay is obtained. In addition,

numerical difficulties were experienced with the axisymmetric

correction term when computing shock containing jet plumes.

As a result, the axisymmetric correction term is neglected in

subsequent computations. Figures 5 and 6 show the effect of

inflow profiles on the centerline velocity and turbulence in-

tensity. These results show that the centerline values are in-

sensitive to the type of profiles used at the inflow boundary.

Figure 7 presents the effect of compressibility and pressure-

dilatation corrections on the computed centerline velocity. It

is clear that the standard turbulence model provides a faster

velocity decay, whereas the turbulence model with corrections

yields a velocity decay that is in better agreement with the

experimental data. The core length (distance required for

mixing layer to reach the jet centerline) predicted by the

standard turbulence model was about 11D, whereas the es-

timated length using the model with corrections was about

16D. Experimental results indicate a core length of about

10D. Figure 8 shows the jet spreading rate with and without

compressibility correction. It is clear that the model without

correction predicts a higher growth rate as compared to the

compressibility corrected model.

Figure 9 presents a comparison of the computed axial ve-

locity profile at X/D = 13.5 and experimental data. The

turbulence model with corrections predicts a velocity profile

that is in good agreement with the experimental data, al-

though the standard turbulence model significantly under-

predicts the measured velocity profile in the center of the jet

and overpredicts it near the edges.

Figure 10 shows the normalized spreading rate for a fully

developed flow (o-,, being the incompressible spreading rate

equal to 0.1) as a function of the jet Mach number. It is clear

that computations without any compressibility correction to

the models (a = 0.0) show only a mild decrease in spreading

rate with an increase in Mach number. However, inclusion

of the compressibility correction to the models (a : 1.0) lead

to a sharp reduction in growth rate in the high Mach number

regime. These results are in general agreement with Langley

experimental data for compressible mixing layer.

I)--101325 N/m 2, Too=2g3K, M= 0.05

1

.0 e¢ _ With corrections [4,5]

.8 I-\Vl _ ..... Without corroctlona

.6_-"'-.'_ O Experiment[,]
u / "-&

0 0.5 1.0 1.5 2.0

riD

Fig. 9 Comparison of axial velocity profile at X/D = 13.5 with ex-

perimental data for a fully expanded supersonic jet plume.

O
o

Fig. l0
ber.

With corrections [4, 5]

.... Without corrections

1.0 P_ = 101325 N/m 2, Too = 293K, Moo= 0.05

0.8 ._.

0.6

0.4

0.2

0.0 I I I I

0 1 2 3 4
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Variation of the spreading rate with the jet exit Math num-
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Case 2: Underexpanded Supersonic Jet

An underexpanded supersonic jet was computed for an

identical freestream condition as in the previous case: In this

case. the jet operating conditions were

M, = 2.0. P,/P, = 1.4, I',/T, : 1.0

Figure 11 shows the computed results using the turbulence

model and comparison with the experimental data. '_ The com-

puted results are shown for the first 2() jct diameters m which

8 shock cells occur. The computations slightly underpredict

the peak pressure m the first four cells of the jet. Ilowever,

the shock cell spacing is predicted well. Figure 12 shows the

effect of turbulence model with and without corrections on

the computed pressure distribution along the jet axis. The

results obtained using the standard turbulence model and the

turbulence model with corrections are in good agreement for

the first three cells. Beyond these three cells, the standard

turbulence model predicts a faster decay of the remaining

shock cell structure. Figure 11 also shows the effect of grid

refinement on the computed centerlme pressure distribution.

It is clear that results obtained using refined mesh are in better

agreement with the experimental data than the coarse mesh

results in which the jet shock structure is displaced slightly

towards the right.

The computed rms wdues of the streamwise turbulence

intensity shown in Fig. 13 along the jet lipline indicate a large

improvement in the results when compressibility and pres-

sure-dilatation corrections are included, tlere, the experi-

mental data are available only up to 10 jet diameters. In

general, the agreement of computed results using the standard

turbulence model with the experimental data was not good.

The measurements and the computed results indicatc that the

turbulence intensity amplifies to reach peak values at the end

Grid

401 x 121 / With corrections [4,5]
..... 401 x 81 J

2.0 ....... Experiment [12]

e=

o: o0 .

-- 1.0 _
P_

0.5 " _Z "

01325N/m ,T 293K, M 005
I I I I

0 5 10 15 20

XID

Fig. 11 Comparison of centerline pressure distribution for an un-

derexpanded supersonic jet plume.

2.0 --- With corrections [4,5]

..... Without corrections

1.5 " _.
I t f

! I I
P , , i

1.o i " '
.5 _05

I I I I

0 5 10 15 20

XlD

Fig. 12 Effecl of compressibility and pressure-dilatalion correclions

on the computed centerline pressure distribution for an underex-

panded supersonic jet plume.

.20

.15

U'

m .10
Uj

.05

-- With corrections [4,5]

..... Without corrections

O Experiment [12]

P =101325 N/m 2, T= 293K, M = 0.05

,, / ; ,,,%,-

>I I I I

0 2.5 5.0 7.5 10.0

XID

Fig. 13 Effect of compressibility and pressure-dilatation corrections

on the lip line turhulence intensity h)r an underexpanded supersonic
jet plume.

With corrections [4,5]

1.6 ..... Experiment [13,14]

.5 , ,;: ,

P-- o : : ," ,
P.

-.8

P=t 01325 N/m 2, T= 293K, M= 0.05

-1.6 _ I i I
0 2.5 5.0

XID

Fig. 14 Comparison of centerline pressure distribution for an over-

expanded supersonic jel plume.

0,2 "

With corrections [4,5]

..... Experiment [13,14]

0.1 " "
:1

L,s , ,', .
Y: I II I_ It II

p I Ii pl Ii I
-- I I II Ii I

p, 0 , , , i it

_: ,,:,,',,;,.

P=1O132s_mz,t= _3_ M= 0.05
i

-0.2 I I I I I I
2.5 5.0 7.5 10.0 12.5 15.0

XlD

F'ig. 15 Comparison of pressure distrihution ahmg the radial line
r/D= 11.375 fi)r an overexpanded supersonic jet plume.

of compr¢ssh)n zones and minimum vahies at the end of ex-

pansion zones.

Case 3: Overexpanded Supersonic Je!

An overcxpandcd supersonic jct was computed for identical

conditions given in the previous case except for the difference

in pressure ratio at the nozzle exit. In this case, the jet op-

erating conditions were

,,tlt = 2.(I, t',/t'. ().7. T,,'T. 1.0
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The computed results for the pressure distribution along

the jet axis and a radial line r/D - 0.375 are shown in Figs.

14 and 15, respectively. The centerline pressure distribution

shown in Fig. 14 represents the axial extent of available data
for this case. The numerical solution predicts the irregular

looking pressure data _'H reasonably well. The comparison of

the computed pressure distribution and the experimental data
along the outer radial line is very good for the first three

shock cells. The location and magnitude of the peak pressure

were predicted well in the computations. In the downstream

region, significant differences were observed in the shock wave

length between the computed results and the experimental

values, suggesting that measured jet plume has a faster jet

spreading rate.

Concluding Remarks

Compressible high-speed jet plumes were studied using a

two-equation turbulence model. It was observed that for

supersonic/subsonic mixing problems, converged results could
be obtained efficiently by using the space-marching proce-

dure. In addition, corrections for compressible dissipation and

pressure-dilatation for the two-equation turbulence model were

tested for high-speed jet plumes. For supersonic jets, the
turbulence model with corrections had significantly improved

the agreement between computed results and experimental

data. Moreover, the numerical study demonstrated that the

computed jet decay rate was sensitive to grid resolution and

insensitive to the type of profiles used at the inflow boundary.
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